About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEDM 2014
Conference paper
Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element
Abstract
Using 2 phase-change memory (PCM) devices per synapse, a 3-layer perceptron network with 164,885 synapses is trained on a subset (5000 examples) of the MNIST database of handwritten digits using a backpropagation variant suitable for NVM+selector crossbar arrays, obtaining a training (generalization) accuracy of 82.2% (82.9%). Using a neural network (NN) simulator matched to the experimental demonstrator, extensive tolerancing is performed with respect to NVM variability, yield, and the stochasticity, linearity and asymmetry of NVM-conductance response.