About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISWC-Posters-Demos-Industry 2021
Poster
Evaluating semantic queries for dataset engineering on the hyperknowledge platform
Abstract
Machine learning typically requires training and validation of models with large and heterogeneous datasets. The engineering of these datasets is a critical task for enabling high accuracy and generalization, although in many cases it is done following an ad-hoc approach. Hyper-knowledge can enable more structured engineering of datasets, by rep-resenting the datasets' symbolic and non-symbolic information, within the same framework, and enabling queries for dataset creation, retrieval, resampling, and combination. In this poster paper, we present how the Hyperknowledge Platform evaluates those queries and analyze its perfor-mance quantitatively. The preliminary results indicate that our platform can support data scientists' work while adding negligible time overhead.