About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Estimation of gate-to-channel tunneling current in ultra-thin oxide sub-50 nm double gate devices
Abstract
Double gate (DG) FETs have emerged as the most promising technology for sub-50 nm transistor design. However, analysis and control of the gate tunneling leakage in DGFET is necessary to fully exploit their advantages. In this paper we have modeled (numerically and analytically) and analyzed gate-to-channel leakage in different DGFET structures, viz., doped body symmetric device (SymDG) with polysilicon gates, intrinsic body symmetric device with metal gates (MGDG) and intrinsic body asymmetric device (AsymDG) with different front and back gate materials. It is observed that, use of (near-mid-gap) metal gate and intrinsic body can result in 3-4× reduction in gate-to-channel leakage compared to the SymDG structure. © 2006 Elsevier Ltd. All rights reserved.