Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
The microstructure property relations of several Pb-free solders are investigated to understand the microstructural changes during thermal and mechanical processes of Pb-free solders. The Pb-free solder alloys investigated include pure Sn, Sn-0.7% Cu, Sn-3.5% Ag, and Sn-3.8% Ag-0.7% Cu (in weight percent). To reproduce a typical microstructure observed in solder joints, the cooling rate, ingot size, and reflow conditions of cast alloys were carefully controlled. The cast-alloy pellets are subjected to compressive deformation up to 50% and annealing at 150°C for 48 h. The microstructure of Pb-free solders is evaluated as a function of alloy composition, plastic deformation, and annealing. The changes in mechanical property are measured by a microhardness test. The work hardening in Sn-based alloys is found to increase as the amount of alloying elements and/or deformation increases. The changes in microhardness upon deformation and annealing are correlated with the microstructural changes, such as recrystallization or grain growth, in Pb-free solder alloys.
Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
A. Nagarajan, S. Mukherjee, et al.
Journal of Applied Mechanics, Transactions ASME
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Xikun Hu, Wenlin Liu, et al.
IEEE J-STARS