About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDCS 2014
Conference paper
E-PPI: Locator service in information networks with personalized privacy preservation
Abstract
In emerging information networks, having a privacy pre-serving index (or PPI) is critically important for locating information of interest for data sharing across autonomous providers while preserving privacy. An understudied problem for PPI techniques is how to provide controllable privacy preservation, given the innate difference of privacy concerns regarding different data owners. In this paper we present a personalized privacy preserving index, coined ε-PPI, which guarantees quantitative privacy preservation differentiated by personal identities. We devise a new common-identity attack that breaks existing PPI's and propose an identity-mixing protocol against the attack in ε-PPI. The proposed ε-PPIconstruction protocol is the first without any trusted third party and/or trust relationships between providers. We have implemented our ε-PPI construction protocol by using generic MPC techniques (secure multi-party computation) and optimized the performance to a practical level by minimizing the expensive MPC part.