About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2018
Conference paper
Dynamic determinantal point processes
Abstract
The determinantal point process (DPP) has been receiving increasing attention in machine learning as a generative model of subsets consisting of relevant and diverse items. Recently, there has been a significant progress in developing efficient algorithms for learning the kernel matrix that characterizes a DPP. Here, we propose a dynamic DPP, which is a DPP whose kernel can change over time, and develop efficient learning algorithms for the dynamic DPP. In the dynamic DPP, the kernel depends on the subsets selected in the past, but we assume a particular structure in the dependency to allow efficient learning. We also assume that the kernel has a low rank and exploit a recently proposed learning algorithm for the DPP with low-rank factorization, but also show that its bottleneck computation can be reduced from O(M 2 K) time to O(M K 2 ) time, where M is the number of items under consideration, and K is the rank of the kernel, which can be set smaller than M by orders of magnitude.