About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SPIE Advanced Lithography 2017
Conference paper
Directed self-assembly patterning strategies for phase change memory applications
Abstract
Phase change material (PCM)-based memory cells have shown promise as an enabler for low power, high density memory. There is a current need to develop and improve patterning strategies to attain smaller device dimensions. In this work, two methods of patterning of PCM device structures was achieved using directed self-assembly (DSA) patterning: the formation of a high aspect ratio pore designed for atomic layer deposition (ALD) of etch damage-free PCM, and pillar formation by image reversal and plasma etch transfer into a PCM film. We show significant CD reduction (180 nm to 20 nm) of a lithographically defined hole by plasma etch shrink, DSA spin-coat and subsequent high selectivity pattern transfer. We then demonstrate structural fabrication of both DSA-defined SiN pores with ALD PCM and DSA-defined PCM pillars. Challenges to both pore and pillar fabrication are discussed.