About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Direct experimental observation of stacking fault scattering in highly oriented pyrolytic graphite meso-structures
Abstract
Stacking fault defects are thought to be the root cause for many of the anomalous transport phenomena seen in high-quality graphite samples. In stark contrast to their importance, direct observation of stacking faults by diffractive techniques has remained elusive due to fundamental experimental difficulties. Here we show that the stacking fault density and resistance can be measured by analyzing the non-Gaussian scatter observed in the c-axis resistivity of mesoscopic graphite structures. We also show that the deviation from Ohmic conduction seen at high electrical field strength can be fit to a thermally activated transport model, which accurately reproduces the stacking fault density inferred from the statistical analysis. From our measurements, we conclude that the c-axis resistivity is entirely determined by the stacking fault resistance, which is orders of magnitude larger than the inter-layer resistance expected from a Drude model.