About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DAC 1999
Conference paper
Dealing with inductance in high-speed chip design
Abstract
Inductance effects in on-chip interconnects have become significant for specific cases such as clock distributions and other highly optimized networks. Designers and CAD tool developers are searching for ways to deal with these effects. Unfortunately, accurate on-chip inductance extraction and simulation in the general case are much more difficult than capacitance extraction. In addition, even if ideal extraction tools existed, most chip designers have little experience designing with lossy transmission lines. This tutorial will attempt to demystify on-chip inductance through the discussion of several illustrative on-chip examples analyzed using full-wave extraction and simulation methods. A specialized PEEC (Partial Element Equivalent Circuit) method tailored for chip applications was used for most cases. Effects such as overshoot, reflections, frequency dependent effective resistance and inductance will be illustrated using animated visualizations of our full-wave simulations. Simple examples of design techniques to avoid, mitigate, and even take advantage of on-chip inductance effects will be described.