About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
Chemical reactions can be classified into distinct categories that encapsulate concepts for how one molecule is transformed into another. One can encode these concepts in rules specifying the set of atoms and bonds that change during a transformation, which is commonly known as a reaction template. While there exist multiple possibilities to represent a chemical reaction in a vector representation, or fingerprint, this is not the case for reaction templates. As a consequence, methods to navigate the space of reaction templates are limited. In this work, we introduce the first reaction template fingerprint. To this end, we follow a data-driven approach relying on a masked language modelling task on SMIRKS strings. We combine unsupervised pre-training with fine-tuning on the classification of templates according to the RXNO ontology, for which we achieve up to 98.4% classification accuracy. We highlight how the learned embeddings can be extracted and used in downstream applications.