About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2013
Conference paper
Data-driven distributionally robust polynomial optimization
Abstract
We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polynomial and histogram density estimates, we can introduce robustness with respect to distributional uncertainty sets without making the problem harder. We show that the optimum to the distributionally robust problem is the limit of a sequence of tractable semidefinite programming relaxations. We also give finite-sample consistency guarantees for the data-driven uncertainty sets. Finally, we apply our model and solution method in a water network optimization problem.