About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CVPR 2023
Conference paper
Contrastive Mean Teacher for Domain Adaptive Object Detectors
Abstract
Object detectors often suffer from the domain gap between training (source domain) and real-world applications (target domain). Mean-teacher self-training is a powerful paradigm in unsupervised domain adaptation for object detection, but it struggles with low-quality pseudo-labels. In this work, we identify the intriguing alignment and synergy between mean-teacher self-training and contrastive learning. Motivated by this, we propose Contrastive Mean Teacher (CMT) - a unified, general-purpose framework with the two paradigms naturally integrated to maximize beneficial learning signals. Instead of using pseudo-labels solely for final predictions, our strategy extracts object-level features using pseudo-labels and optimizes them via contrastive learning, without requiring labels in the target domain. When combined with recent mean-teacher self-training methods, CMT leads to new state-of-the-art target-domain performance: 51.9% mAP on Foggy Cityscapes, outperforming the previously best by 2.1% mAP. Notably, CMT can stabilize performance and provide more significant gains as pseudo-label noise increases.