About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
PLDI 2021
Conference paper
Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
Abstract
Stan is a probabilistic programming language that is popular in the statistics community, with a high-level syntax for expressing probabilistic models. Stan differs by nature from generative probabilistic programming languages like Church, Anglican, or Pyro. This paper presents a comprehensive compilation scheme to compile any Stan model to a generative language and proves its correctness. We use our compilation scheme to build two new backends for the Stanc3 compiler targeting Pyro and NumPyro. Experimental results show that the NumPyro backend yields a 2.3 x speedup compared to Stan in geometric mean over 26 benchmarks. Building on Pyro we extend Stan with support for explicit variational inference guides and deep probabilistic models. That way, users familiar with Stan get access to new features without having to learn a fundamentally new language.