Carry chains for ultra high-speed SiGe HBT adders
Abstract
Adder structures utilizing SiGe Hetero-junction Bipolar Transistor (HBT) digital circuits are examined for use in high clock rate digital applications requiring high-speed integer arithmetic. A 4-gate deep test structure for 32-bit addition using a 210 GHz fT process has been experimentally verified to operate with 37.5 ps delay or 26.7 GHz speed. The paper documents a unique blend of CML and ECL circuit innovations, which is needed to obtain this result. The chip is estimated to have a power-delay product of 109 ps-W at a device temperature of 85°C. A low power design is shown to have a power-delay product of 48 ps-W at 21.7 GHz. Speed-power trade-offs are explored through pure ECL logic and varying current. Additionally, with next generation SiGe HBTs, this work shows that 40 GHz is achievable at slightly above room temperature. © 2011 IEEE.