About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICLR 2022
Conference paper
Can an Image Classifier Suffice For Action Recognition?
Abstract
We propose a new perspective to perform action recognition without temporal modeling. We cast the video recognition problem as an image recognition task, and show that an image classifier can suffice for video understanding with no bells and whistles. Our approach is extremely simple, and it composes input frames into a super image to train a classifier to fulfill the task of action recognition, in exactly the same way as classifying an image. We prove the viability of our idea by demonstrating strong and promising performance on three public datasets including Kinetics400, Moments and Jester, using a recently developed vision transformer. We also experiment with the prevalent ResNet image classifiers in vision to further validate our idea. Our approach achieves comparable results on Kinetics400 compared to some more sophisticated CNN approaches based on spatio-temporal modeling.