About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
BIBM 2019
Conference paper
Building a Risk Model for the Patient-centred Care of Multiple Chronic Diseases
Abstract
With the increase of multimorbidity due to population ageing, managing multiple chronic health conditions is a rising challenge. Machine-learning can contribute to a better understanding of persons with multimorbidity (PwMs) and how to design an effective framework of care and support for them. We present a risk model of older PwMs that was derived from the TILDA dataset, a longitudinal study of the ageing Irish population. This model is based on a 26-nodes Bayesian network that represents patients possibly having one or more chronic conditions among diabetes, chronic obstructive pulmonary disease and arthritis, through a joint probability distribution of demographic, symptomatic and behavioral dimensions. We describe our method, give an exploratory analysis of the risk model, and assess its prediction accuracy in a cross-validation experiment. Finally we discuss its use in supporting management of care for PwMs, drawing on comments from health practitioners on the model.