Shashanka Ubaru, Lior Horesh, et al.
Journal of Biomedical Informatics
Let A be a normal matrix with eigenvalues λ1, λ2,..., λn, and let G{cyrillic} denote the smallest disc containing these eigenvalues. We give some inequalities relating the center and radius of G{cyrillic} to the entries in A. When applied to Hermitian matrices our results give lower bounds on the spread maxij(λi - λj) of A. When applied to positive definite Hermitian matrices they give lower bounds on the Kantorovich ratio maxij(λi - λj)/(λi + λj). © 1994.
Shashanka Ubaru, Lior Horesh, et al.
Journal of Biomedical Informatics
Kenneth L. Clarkson, K. Georg Hampel, et al.
VTC Spring 2007
Imran Nasim, Melanie Weber
SCML 2024
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992