Publication
Data Mining and Knowledge Discovery
Paper

BIRCH: A new data clustering algorithm and its applications

View publication

Abstract

Data clustering is an important technique for exploratory data analysis, and has been studied for several years. It has been shown to be useful in many practical domains such as data classification and image processing. Recently, there has been a growing emphasis on exploratory analysis of very large datasets to discover useful patterns and/or correlations among attributes. This is called data mining, and data clustering is regarded as a particular branch. However existing data clustering methods do not adequately address the problem of processing large datasets with a limited amount of resources (e.g., memory and cpu cycles). So as the dataset size increases, they do not scale up well in terms of memory requirement, running time, and result quality. In this paper, an efficient and scalable data clustering method is proposed, based on a new in-memory data structure called CF-tree, which serves as an in-memory summary of the data distribution. We have implemented it in a system called BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies), and studied its performance extensively in terms of memory requirements, running time, clustering quality, stability and scalability; we also compare it with other available methods. Finally, BIRCH is applied to solve two real-life problems: one is building an iterative and interactive pixel classification tool, and the other is generating the initial codebook for image compression. © 1997 Kluwer Academic Publishers.

Date

Publication

Data Mining and Knowledge Discovery

Authors

Topics

Share