Biodegradable Block Copolyelectrolyte Hydrogels for Tunable Release of Therapeutics and Topical Antimicrobial Skin Treatment
Abstract
Biodegradable polycarbonate-based ABA triblock copolyelectrolytes were synthesized and formulated into physically cross-linked hydrogels. These biocompatible, cationically, and anionically charged hydrogel materials exhibited pronounced shear-thinning behavior, making them useful for a variety of biomedical applications. For example, we investigated the antimicrobial activity of positively charged thiouronium functionalized hydrogels by microbial growth inhibition assays against several clinically relevant Gram-negative and Gram-positive bacteria. It is noteworthy that these hydrogels exhibited broad spectrum killing efficiencies approaching 100%, thereby rendering these thixotropic materials attractive for treatment of skin and other surface bound infections. Finally, cationic trimethylammonium containing hydrogels and anionic carboxylic acid functionalized hydrogels were utilized to sustain the release of negatively charged (diclofenac) and positively charged (vancomycin) therapeutics, respectively. Collectively, the present work introduces a simple method for formulating charged hydrogel materials that are capable of interacting with various analytes of interest through noncovalent interactions.