About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ECTC 2015
Conference paper
Automated, self-aligned assembly of 12 fibers per nanophotonic chip with standard microelectronics assembly tooling
Abstract
Silicon photonics technology aims to leverage microelectronic chip fabrication facilities to bring disruptive advancements in photonic circuits cost and complexity. However, the large scale deployment of silicon photonics is muted by the difficulty of cost-efficient and scalable, singlemode optical inputs and outputs. To disruptively improve on cost and scalability, we believe that the best approach is to enable existing high-throughput microelectronic packaging tools for single-mode photonic packaging. In this paper, we experimentally demonstrate such approach with automated assembly of standard-fiber arrays to photonic chips. We identify the main challenges and solutions to enabling highthroughput pick-and-place tooling for single-mode photonic assembly. These include challenges with fiber handling, placement accuracy and limitations in movement complexity. We present a manufacturability assessment of the employed fiber-to-chip self-alignment. We show through Monte Carlo tolerance analysis an expected manufacturing re-alignment accuracy of <1.3 um despite initial misalignments of up to ∼40 um. We believe the approach proposed and demonstrated here can substantially improve on single-mode optical input and output cost and scalability.