About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CCS 2010
Conference paper
Assessing trust in uncertain information using Bayesian Description Logics
Abstract
Decision makers (humans or software agents alike) are faced with the challenge of examining large volumes of information originating from heterogeneous sources with the goal of ascertaining trust in various pieces of information. In this paper we argue (using examples) that traditional trust models are limited in their data model by assuming a pair-wise numeric rating between two entities (e.g., eBay recommendations, Netflix movie rating, etc). We present a novel trust computational model for rich, complex and uncertain information encoded using Bayesian Description Logics. We present security and scalability tradeoffs that arise in the new model, and the results of an evaluation of the first prototype implementation under a variety attack scenarios.