Publication
STOC 2012
Conference paper

Approximation algorithms for semi-random partitioning problems

View publication

Abstract

In this paper, we propose and study a new semi-random model for graph partitioning problems. We believe that it captures many properties of real-world instances. The model is more flexible than the semi-random model of Feige and Kilian and planted random model of Bui, Chaudhuri, Leighton and Sipser. We develop a general framework for solving semi-random instances and apply it to several problems of interest. We present constant factor bi-criteria approximation algorithms for semi-random instances of the Balanced Cut, Multicut, Min Uncut, Sparsest Cut and Small Set Expansion problems. We also show how to almost recover the optimal solution if the instance satisfies an additional expanding condition. Our algorithms work in a wider range of parameters than most algorithms for previously studied random and semi-random models. Additionally, we study a new planted algebraic expander model and develop constant factor bi-criteria approximation algorithms for graph partitioning problems in this model. © 2012 ACM.

Date

Publication

STOC 2012

Authors

Share