About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2023
Conference paper
Approximate Inference in Logical Credal Networks
Abstract
Logical Credal Networks or LCNs is a recent probabilistic logic designed for effective aggregation and reasoning over multiple sources of imprecise knowledge. An LCN specifies a set of probability distributions over all interpretations of a set of logical formulas for which marginal and conditional probability bounds on their truth values are known. Inference in LCNs involves the exact solution of a non-convex non-linear program defined over an exponentially large number of non-negative real valued variables and, therefore, is limited to relatively small problems. In this paper, we present ARIEL - a novel iterative message-passing scheme for approximate inference in LCNs. Inspired by classical belief propagation for graphical models, our method propagates messages that involve solving considerably smaller local non-linear programs. Experiments on several classes of LCNs demonstrate clearly that ARIEL yields high quality solutions compared with exact inference and scales to much larger problems than previously considered.