About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISWC-Posters 2020
Conference paper
Applying learning and semantics for personalized food recommendations?
Abstract
We demonstrate the use of a health coach platform that recommends personalized selections of food recipes to diabetic patients. On our platform, we implement a question-answering service that allows questions such as "suggest a good breakfast" to be queried; a response with a list of recipes that is applicable to the patient vis-à-vis their health condition and food preferences is generated. Our research is intended to support the personalization and explainability of recommended food options using a novel application of guideline recommendations encoded in a semantic format. Our platform includes a repository of over half a million recipes and their nutritional content, where each recipe is also represented as a vector-based embedding that has been derived from the recipe's ingredient list and preparation instructions [4].