About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI 2011
Conference paper
Analyzing and Predicting Not-Answered Questions in Community-Based Question Answering Services
Abstract
This paper focuses on analyzing and predicting not-answered questions in Community based Question Answering (CQA) services, such as Yahoo! Answers. In CQA, users express their information needs by submitting questions and await answers from other users. One of the key problems of this pattern is that sometimes no one helps to give answers. In this paper, we analyze the not-answered questions and give a first try of predicting whether questions will receive answers. More specifically, we first analyze the questions of Yahoo! Answers based on the features selected from different perspectives. Then, we formalize the prediction problem as supervised learning task and leverage the proposed features to make predictions. Extensive experiments are made on 76,251 questions collected from Yahoo! Answers.