About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDAR 2019
Conference paper
An end-to-end trainable framework for joint optimization of document enhancement and recognition
Abstract
Recognizing text from degraded and low-resolution document images is still an open challenge in the vision community. Existing text recognition systems require a certain resolution and fails if the document is of low-resolution or heavily degraded or noisy. This paper presents an end-to-end trainable deep-learning based framework for joint optimization of document enhancement and recognition. We are using a generative adversarial network (GAN) based framework to perform image denoising followed by deep back projection network (DBPN) for super-resolution and use these super-resolved features to train a bidirectional long short term memory (BLSTM) with Connectionist Temporal Classification (CTC) for recognition of textual sequences. The entire network is end-to-end trainable and we obtain improved results than state-of-the-art for both the image enhancement and document recognition tasks. We demonstrate results on both printed and handwritten degraded document datasets to show the generalization capability of our proposed robust framework.