Algorithmic aspects of bandwidth trading
Abstract
We study algorithmic problems that are motivated by bandwidth trading in next-generation networks. Typically, bandwidth trading involves sellers (e.g., network operators) interested in selling bandwidth pipes that offer to buyers a guaranteed level of service for a specified time interval. The buyers (e.g., bandwidth brokers) are looking to procure bandwidth pipes to satisfy the reservation requests of end-users (e.g., Internet subscribers). Depending on what is available in the bandwidth exchange, the goal of a buyer is to either spend the least amount of money so as to satisfy all the reservations made by its customers, or to maximize its revenue from whatever reservations can be satisfied.We model this as a real-time nonpreemptive scheduling problem in which machine types correspond to bandwidth pipes and jobs correspond to end-user reservation requests. Each job specifies a time interval during which it must be processed, and a set of machine types on which it can be executed. If necessary, multiple machines of a given type may be allocated, but each must be paid for. Finally, each job has associated with it a revenue, which is realized if the job is scheduled on some machine.There are two versions of the problem that we consider. In the cost minimization version, the goal is to minimize the total cost incurred for scheduling all jobs, and in the revenue maximization version the goal is to maximize the revenue of the jobs that are scheduled for processing on a given set of machines. We consider several variants of the problems that arise in practical scenarios, and provide constant factor approximations. © 2007 ACM.