About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
e-Energy 2019
Conference paper
AI modelling and time-series forecasting systems for trading energy flexibility in distribution grids
Abstract
We demonstrate progress on the deployment of two sets of technologies to support distribution grid operators integrating high shares of renewable energy sources, based on a market for trading local energy flexibilities. An artificial-intelligence (AI) grid modelling tool, based on probabilistic graphs, predicts congestions and estimates the amount and location of energy flexibility required to avoid such events. A scalable timeseries forecasting system delivers large numbers of short-term predictions of distributed energy demand and generation. We discuss the deployment of the technologies at three trial demonstration sites across Europe, in the context of a research project carried out in a consortium with energy utilities, technology providers and research institutions.