Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Planning tasks succinctly represent labeled transition systems, with each ground action corresponding to a label. This granularity, however, is not necessary for solving planning tasks and can be harmful, especially for model-free methods. In order to apply such methods, the label sets are often manually reduced. In this work, we propose automating this manual process. We characterize a valid label reduction for classical planning tasks and propose an automated way of obtaining such valid reductions by leveraging lifted mutex groups. Our experiments show a significant reduction in the action label space size across a wide collection of planning domains. We demonstrate the benefit of our automated label reduction in two separate use cases: improved sample complexity of model-free reinforcement learning algorithms and speeding up successor generation in lifted planning. The code and supplementary material are available at https://github.com/IBM/Parameter-Seed-Set.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Ben Fei, Jinbai Liu
IEEE Transactions on Neural Networks
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010