Publication
Numerical Algorithms
Paper

Accelerating data uncertainty quantification by solving linear systems with multiple right-hand sides

View publication

Abstract

The subject of this work is accelerating data uncertainty quantification. In particular, we are interested in expediting the stochastic estimation of the diagonal of the inverse covariance (precision) matrix that holds a wealth of information concerning the quality of data collections, especially when the matrices are symmetric positive definite and dense. Schemes built on direct methods incur a prohibitive cubic cost. Recently proposed iterative methods can remedy this but the overall cost is raised again as the convergence of stochastic estimators can be slow. The motivation behind our approach stems from the fact that the computational bottleneck in stochastic estimation is the application of the precision matrix on a set of appropriately selected vectors. The proposed method combines block conjugate gradient with a block-seed approach for multiple right-hand sides, taking advantage of the nature of the right-hand sides and the fact that the diagonal is not sought to high accuracy. Our method is applicable if the matrix is only known implicitly and also produces a matrix-free diagonal preconditioner that can be applied to further accelerate the method. Numerical experiments confirm that the approach is promising and helps contain the overall cost of diagonal estimation as the number of samples grows. © 2013 Springer Science+Business Media New York.

Date

Publication

Numerical Algorithms

Authors

Topics

Share