Publication
ACM SIGPLAN Notices
Paper

A tag-based approach for the design and composition of information processing applications

View publication

Abstract

In the realm of component-based software systems, pursuers of the holy grail of automated application composition face many significant challenges. In this paper we argue that, while the general problem of automated composition in response to high-level goal statements is indeed very difficult to solve, we can realize composition in a restricted context, supporting varying degrees of manual to automated assembly for specific types of applications. We propose a novel paradigm for composition in flow-based information processing systems, where application design and component development are facilitated by the pervasive use of faceted, tag-based descriptions - of processing goals, of component capabilities, and of structural patterns of families of application. The facets and tags represent different dimensions of both data and processing, where each facet is modeled as a finite set of tags that are defined in a controlled folksonomy. All data flowing through the system, as well as the functional capabilities of components are described using tags. A customized AI planner is used to automatically build an application, in the form of a flow of components, given a high-level goal specification in the form of a set of tags. Endusers use an automatically populated faceted search and navigation mechanism to construct these high-level goals. We also propose a novel software engineering methodology to design and develop a set of reusable, well-described components that can be assembled into a variety of applications. With examples from a case study in the Financial Services domain, we demonstrate that composition using a faceted, tag-based application design is not only possible, but also extremely useful in helping end-users create situational applications from a wide variety of available components. Copyright © 2008 ACM.

Date

Publication

ACM SIGPLAN Notices

Share