About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SBBD 2021
Short paper
A Recommender for Choosing Data Systems based on Application Profiling and Benchmarking
Abstract
In our data-driven society, there are hundreds of possible data systems in the market with a wide range of configuration parameters, making it very hard for enterprises and users to choose the most suitable data systems. There is a lack of representative empirical evidence to help users make an in- formed decision. Using benchmark results is a widely adopted practice, but like there are several data systems, there are various benchmarks. This ongoing work presents an architecture and methods of a system that supports the recommendation of the most suitable data system for an application. We also illustrates how the recommendation would work in a fictitious scenario.