Publication
KDD 2007
Conference paper

A probabilistic framework for relational clustering

View publication

Abstract

Relational clustering has attracted more and more attention due to its phenomenal impact in various important applications which involve multi-type interrelated data objects, such as Web mining, search marketing, bioinformatics, citation analysis, and epidemiology. In this paper, we propose a probabilistic model for relational clustering, which also provides a principal framework to unify various important clustering tasks including traditional attributes-based clustering, semi-supervised clustering, co-clustering and graph clustering. The proposed model seeks to identify cluster structures for each type of data objects and interaction patterns between different types of objects. Under this model, we propose parametric hard and soft relational clustering algorithms under a large number of exponential family distributions. The algorithms are applicable to relational data of various structures and at the same time unifies a number of stat-of-the-art clustering algorithms: co-clustering algorithms, the k-partite graph clustering, Bregman k-means, and semi-supervised clustering based on hidden Markov random fields. © 2007 ACM.

Date

Publication

KDD 2007

Authors

Share