About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLDB 2003
Conference paper
A nanotechnology-based approach to data storage
Abstract
Ultrahigh storage densities of up to 1 Tb/in.2 or more can be achieved by using local-probe techniques to write, read back, and erase data in very thin polymer films. The thermomechanical scanning-probe-based data-storage concept, internally dubbed "millipede", combines ultrahigh density, small form factor, and high data rates. High data rates are achieved by parallel operation of large 2D arrays with thousands micro/nanomechanical cantilevers/tips that can be batch-fabricated by silicon surface-micromachining techniques. The inherent parallelism, the ultrahigh areal densities and the small form factor may open up new perspectives and opportunities for application in areas beyond those envisaged today.