Kubilay Atasu, Thomas Parnell, et al.
Big Data 2017
Unstructured text data is being generated at an unprecedented rate in the form of Twitter feeds, machine logs or medical records. The analysis of this data is an important step to gaining significant insight regarding innovation, security and decision-making. The performance of traditional compute systems struggles to keep up with the rapid data growth and the expected high quality of information extraction. To cope with this situation, a compilation framework is presented that can transform text analytics queries into a hardware description. Deployed on an FPGA, the queries can be executed 60 times faster on average compared to a multi-threaded software implementation. The performance has been evaluated on two generations of high-end server systems including two generations of FPGAs, demonstrating the performance gains from advanced technology.
Kubilay Atasu, Thomas Parnell, et al.
Big Data 2017
Raphael Polig, Kubilay Atasu, et al.
FPL 2013
Kubilay Atasu
Journal of Signal Processing Systems
Jonathan Rohrer, Kubilay Atasu, et al.
CODES+ISSS 2009