About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2021
Workshop poster
A comparative study of stochastic and deep generative models for multisite precipitation synthesis
Abstract
Future climate change scenarios are usually hypothesized using simulations from weather generators. However, there only a few works comparing and evaluating promising deep learning models for weather generation against classical approaches.  This study shows preliminary results making such evaluations for the multisite precipitation synthesis task. We compared two open-source weather generators: IBMWeathergen (an extension of the Weathergen library) and RGeneratePrec, and two deep generative models: GAN and VAE, on a variety of metrics. Our preliminary results can serve as a guide for improving the design of deep learning architectures and algorithms for the multisite precipitation synthesis task.