About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KDD 2021
Conference paper
2nd International Workshop on Data Quality Assessment for Machine Learning
Abstract
The 2nd International Workshop on Data Quality Assessment for Machine Learning (DQAML'21) is organized in conjunction with the Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD). This workshop aims to serve as a forum for the presentation of research related to data quality assessment and remediation in AI/ML pipeline. Data quality is a critical issue in the data preparation phase and involves numerous challenging problems related to detection, remediation, visualization and evaluation of data issues. The workshop aims to provide a platform to researchers and practitioners to discuss such challenges across different modalities of data like structured, time series, text and graphical. The aim is to attract perspectives from both industrial and academic circles.